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A class of exact solutions of a system of equazions of elecU~hydrodynamics is 
studied for which the electric current is directed along streamlines of the hydro- 
dynamic flow. In the  two-dimensional case ~he solution is written down expli-  
citly. It is shown how to construct other exact  solutions for which the collinear- 
ity condition of the electric current density and velocity v e c ~ s  has not been 
satisfied, by using the solutiom obtained, as an iUmtration, an exact  solution 
for the flow of a unipolarly charged fluid in a channel with elee~ode-walls  is 
constructed. It is shown that for a particular kind of hydrodynamic eddy current 
the solution of the two-dimensional system of equations can be reduced in some 
cases to finding the solution of a system of ordinary differential equations. 

I ,  Let us examine the stationary flow of a unipolarly charged fluid. The parameter 
of the electrohydrodynamic interaction is assumed infinitesimal, A hydrodynamic 
srceam of ideal incompressible homogeneom fluid has the potential V* = - -  g rad  ~ * .  
Ohm's law has the form j* _ q* (V* -~ bE*) ,  where b = cons t  is the mobil i ty .  
Let us introduce dimemionle:s quantities by meam of formulas 

x = l ~ , y  = l q ,  z = l~ ,  ¢~* = ¢~, ~ *  = u o l ~  

q .  = ' ~ g 7  q e " ' n  (1.1) 

where q~* is the electric field potential E* ----- - -  g rad  ~*.  Using the potent ia l i~ of 
the e i e c m c  field and the velocity field, let  us introduce the total potential ~---~ (P-~-q). 
The equatiom of electrohydrodynamics are [1] 

A ~  = 0 ,  d i v ( q g r a d  X) - - 0 ,  AX = - - q  ( t . 2 )  
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Let us seek the solution of the system (1.2) for which the current density j and velocity 
Y vectors are collineat at each point of the stream 

j = a v  ( t 3 )  

where a = a (~, ~I, ~) is an unknown function which must be found during the solu- 
tion, The form of the hydrodynamic stream for which the construction of the solution 

(I, 3) is possible will also be found during the solution. 

Let us turn to the solution of the problem posed. Using Ohm's law and (I. 3), we obtain 
an equation for a from the second equation in (I. 2) 

(grad a . g r a d  q ) )  ~ 0  (1.4) 

If two stream functions ~1 and ~ r  are introduced for the hydrodynamic flow [2], then 
we obtain from (1.4) that a is a function of ~ l  and ~2 

a ffi a (~1, lye,) (1.5) 

Taking account of Ohm's law and the potentiality of the velocity field, we find that 
(1.3) is equivalent to the relationship 

grad ~( ----- aq -I  grad q) (I.6) 

From (1.5) and (1.6) we obtain the general form of the relation between X, q and 

~' (I) X ~--- h ( ~ ) ,  q = a (W~l, ~71) / h '  (~ )  ( t .7 )  

where h ( ~ )  and a (~1, T , )  are the desired functions of their arguments. Substitut- 
ing th~ =xpvtssiom for X and q from ( I .  7) and ( I .  2). we obtain equations to determine 
the unknown functions ~ ,  h ( ~ )  and a Q~tl, ~Ir,) from the first and third equations 

[ g rad  ~) 12 ----- - -  h, (~) h" (~) ' 

Therefore, the problem of finding exact  solutions of the system (1.2) in the form (1.3) 
has been reduced to a problem for harmonic functions. Every exact  solution of the 
problem of potential motion of an incompressible ideal fluid for which the absolute 
value of the velocity can be represented as the product V ----- V 1 ((l)) ]7, (~1,  ~I~2) ' 
generares an exact  solution of the system of equations of eleclzohydrodynamics (1 .2) ,  
where a (xlzl, ~r2) and h ({])) are found from the following relationships: 

where a0, a l ,  c~l, ~ )o  are constants. 

2 .  In the two-dimensional case. the problem of finding solutions of the form (1.3) 
for the system (1.2) can be carried out completely. In this case formulas (1.7) and 
(1.8) become 

a (~F) [ g rad  • [9 = - -  a ( ~  A ~  ----- O (2.1) 
)c = h (q)) ,  q =-  h' Co)j ' h' (a)) h" ( ~ ) '  

Hem ~ and ~ agree with the potential and stream function of the potential flow of 
an ideal incompressible fluid taken with opposite sign, w ---- • + i ~ is an analyti-  
cal function of • ~--- ~ + t~l. 

Let us turn to finding the functions ~ ,  h ( ~ )  and a (~F). The function ~ is hat-  
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monic, therefore, In J g rad  ~ [2 is aLso a harmonic function, hence 

Substituting the expression f a  ] g rad  • I ~ from (2.1) into (2.2) and taking into account 
that ¢ and ~ are independent, we obtain an equation for. a (~ )  and h (O) 

as 
as ln l h '  (O) h" (O) I = c, in I a ( ~ )  J ----c, c = const (2.3) 

8~t  a~F ~ 

Solving (2.3), we obtain the general form for h (O) and a (W) in the two-dimemional  
c a s e  ~ ~) 

h (0) + + ] = - -  " ' d O  -4- ce 
0 0 

a ("F)  = - -  c4 e x p  (c'-F °- + cs"I-") 

where c, Cl, c t , . . . ,  ct are constants. Knowing h (O)  and a (~r) we find an expression 
for In  I g r ad  • t 2 and therefore, the relation between w and "~ 

-I' + .,>,,., + c, + d,,., --+1---- exp  -E- 
0 

where ~1 ffi= ~1 ~- i~ix, c7 are constants. The electrical field potential q) and the 
stream function for the eleclzic ctmmnt density vector ~ (]L -~- i~b / ~ ,  ]~ == 

~----- -~a(~')d~F+%, %------const ¢p = h ( O ) - -  0 ,  
0 

Formulas (2.4). (2. 6) exhaust all  solutions of the form (1.3) in the two-dimemional  
case. Particular solutions corresponding to one-dimensional flow (c ---- c 1 ~ cs "" 
c~ • 0 ) ,  to the flow from a source (c ---~c 3 = 0 ) ,  from avor t ex  (c ----- c 1 =ffiO),and 
from a vortex source (c ----- 0), have been obtained in [~]. The one-dimensional flow 
has also been investigated in [4]. 

8.  We examine one general propert T of the exact solutions of the system (1 .2) .  
Let an arbitrary exact  solution q)., O .  of the system (1.2) which has the total poten- 
tial X, be known. In this case any pair of functions ~, • is also an exact  solution of 
the system of equations of eiecl~ohydrodynamins (1.2) if two conditions are satisfied : 
(1) q) ~ • ----- X. and (2) AO ~ 0. Therefore, each exact  solution of the system 
(1.2) generates an infinite set of exact  solutions q), O,  where the current and charge 
density disl~ibutions are identical for all exact solutions fzom this set and are determined 
only by the total potential ~(,. 

Using the above, other exact  solutions for which condition (1.3) has not been satisfied 
can be consu~cr~d by using the exact  solutions (2.4), (2.5)  obtained. Therefore, exact  
solutions can be cons~ucmd for problems of the flow around elec~ode*bodies by an 
elec~rohydrodynamic stream (the solution of this problem under an assumption on the 
smallness of the characteristic dimension of the eleczrode-body as compared with the 
characteristic dimension of the flow domain has been given in [5]) for the flow of a 
unipolarly charged fluid in a channel with electrode-walls, etc. An example of the 
construction of such an exact  solution for the electrohydrodynamic flow in a channel 
with electrode-walls with the total potential X = ~ ~ "  will be considered below. 
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Such a total potential is obtained from (2.4) if we set 
O? = ~1 = 111 == O, C 2 = C, = 'Is 

4. 
mula 

A F 

A 0 

C ~C I ~C 3 -----C 5 ~C 6 -~- 

Let us consider the following problem. The total potential is given by the for- 
= - - ~ " ' ,  ~ > 0 in the flow domain G of a unipolarly charged fluid. The 

domain G is bounded by the emitter 
f'7 ',"' /r' 

I 
, D'/ , E' './,, 

o / e 

I# '~: 

Fig. I 

HMH', the collectors  FD and F'D', 
and the electrode-walls D'C' and D C  
(Fig. 1). The solid walls DE and D'E' 
issue from the points D and D' parallel 
to the ~-axis. The fluid will be without 
charge outside the domain G ~ EL) C U 
E'D'C' . The hydrodynamic flow domain 
G' coincides with the exterior EDC U 
E'D'C' It is assumed that there is no 
ihteraction between the hydrodynamic 
stream and the emitter and collectors 
[6], therefore, the hydrodynamic potential 

CI) can be sought in the domain G' without raking account of the influence of the grids. 
Symmeu 7 relative w the ~ -axis  is assumed in solving the problem, hence, it is poaible 
to l imit  oneself to seeking solutions in just the lower half-plane. The point D has the 
coordi~tes  (~o, - -  ~]o)- Let us l imit  om~elves to an analysis of the case for which 

• ~o ~ 4/9" As will be shown below, this lat-Ler condition assures monotoneity of the 
approach CD to the ~-axis,  and therefore, also that the channel DCC'D" has the 
shape p i c ~ d  in Fig. 1. The points in the lower half-plane in the figure have the fol- 
lowing cooa~inates : 

A .(--oo,  0), B ( +  oo, 0), C ( +  oo, --n0), D (~0 , - -~0 ) ,  
E ( +  oo, - -  %), H (~1~, -- oo), F (~o~, - - ° ° ) ,  M (~1, 0). 

Values of 11 °, ~o~, ~1= will he determined during the solution. 
In the majority of cases, electrohydrodynamic inviscid flows in channels have been 

investigated in a one.-dimeusional approximation (see ['7. 8], say). However, in many 
cases the electric forces in the flow domain of a unipolarly charged fluid tusu out to he 
nonpotential, hence, the need arises toexamine  the nonuniform problem.Thus, for exam-  
ple, a two-dimensional problem about the motion of a unipolarly charged fluid in a 
channel with electrode-walls if  solved in [9] by successive approximations. 

In the problem considered here, the exact solution is obtained for the two-dimensional 
elecl~rohydrodynamic flow in a channel with electrode-walls. The scheme to be eluci-  
dated for constructIng the solution can be used to find other exact solutions if exp~ssiom 
are taken for Z which are different from that presented above (from (2.4). for example).  
The shapes of the channels will hence be different in the solution obtained. 

Let us turn to the solution of the problem. It is necessary to find the shape of the 
electrode CD and the value of the e lec~ic  potential thereon ~ ._~ q~0 ----- cons t ,  for 
which the po~nt ia l  • of the hydrodynamic flow in the domain G' would yield a given 
total potential X = . - -  ~",in combination with (p in the domain G. 

Let us assume that the desired shape CD has been found. In this case the following 
bom2dary conditions : 
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ao(~,,0) ---0 f o r - - o ~ < ~ , < ~ ,  ~0(~,,--~o) =0  for ¢0<~< ,o  (4.1) 
a11 om 

a ~  ~ 0  ---~0 for ~ - - . - - oc  (D (0, 0) ----- 0 (DIcD = - -  ~ ' / ' +  % ,  - - ~ - - - ,  - -  i ,  ~ 

are imposed on the function (D in the domain G ' .  The function (D is harmonic, there- 
fore, an analytic function w = w (z) = (D + iUl can be introduced, whet,  z = ~ + 
i~]. After imertton of the function ~ . the boundary conditiom (4.1) are equivalent to 
the following : 

~F(~,0)-- - -0  for - - ~ < ~ < ~ .  ~F(~.,--Ti0)----~IJ'0 for ~ 0 < ~ < ~  

(DIcD = - -  ~'" + q%, ~ l c D =  ~'0 (4.2) 

am aO .-~ 0 for ~, - '  ---,o, (D (0, O) = O, ~ '  (0, O) = 0 0~, 1, a--'K" 

Here ~I~o ---~ coIlst  ~ 0, the value of ~F 0 is determined during the solution. 
Let us turn to the question of the behavior of the curve CD. As is seen from the ex- 

pression for (D Ico from (4.9), the quantity (DIcD decrea, es more rapidly for ~o ~ 4/9 
than in a comtant stream with the potential (D ---- ~ ~. Such a sftuation is possible in 
a channel with monotonely demm~ing cross section, i . e .  for CD and C'D" approaching 
the ~-axis monotonely. Evidently CD and C'D' approach the ~-axis asymptotically, 
therefore, ~o _ 0. Otherwise (~0 ~i~ 0) there would be (D ] cD " -  k~, k = const ,  
for very large ~, which results in a contradiction to (4. 2). 

As has already been said, w ~ (D -~ iq ~ is an analytic function o f  • ---- ~ -~, iT}, 
ther,  fore, dz / dw ----- X -~- i~ is also an analytic ftmction. I~t m turn to the deter- 
mination of this function. Let m map the hydrodynamic flow domain in tim lower half-  
plane onto the w plane, and then by ruing the trar~formation 

w =  l n ( i - - c o ) ~  .~ 

we map the domain obtained in the w plane onto the upper half of the co ----- cox 2_, ico.~ 
plane. Here (D o @ i~r o is the value of w at the point z ----- [0 - -  i~10. The images of 
the poXnts A, B,  C. D,  E have the coordinates A 1 ( +  oo, 0), B 1 ( i ,  0), C x (1, 0). 
D x (0, 0), Ex ( - - o~ ,  D) in t l~ co plane. Using (4.2) and the relatiomhip between w 
and co we obtain the foUowing boundary conditiom for the function ~. + i~, which 
:nust be found in the upper half-plane:  

I ~ - = 0  for - - o o < o ~ < 0 ,  ~ = 0  for t < o ~ < ~ o  

~ID "I - t /~ 
L ~I'03 for 0<o,<i 

The solution of this problem is given by the Keldysh-Sedov formula in [10] 

0 
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where u is a real  number. 
Let us turn w the demrmlna~on of  the unknown consmn~ ~ o ,  ~0 ,  ~o, u .  Hence, 

d w / d ~  = l  / (~ . -~-  i u) - -  - - t  at the p o i n t A , t h e r e f o r e ,  ~ + i u ----- - - t  for 
o) ~ -~- oo.  From this condition we obtain that 

a --- - - t  ( 4 . 4 )  

Now dw / d~ = oo at the point B, therefore, ~ --~ ~ = 0 for c~ ~ i. From this 
condition we obtain 

~ =  T ~ ' \ ' E - /  J ~ i n ( i - - ~ ) + ~ + " ~ " ; ' o  ] y x ( i - , , ~  (4.5) 
0 

Integrating (4. 3), we obtain an expression for • == • (o)) 
w 1 

0 0 
iii I '  

x - - ~  :~ J\-@-~'--i/ do) T al + ~a~ (4.6) 
0 

where a x -~- in2 is a constant. At the point "c = 0 we have w = O, hence 

0 0 

0 

where o)oiS the root greater than unity of  the equation ~I/o In  (o)o - -  t )  -~- ~o~Oo -F 
n ~ o  - -  0. The point a) = 0 in the a)-plane o~m~pon& to the point D (~o, - -  11o), 
t h e f t ,  we obtain from (4. 6) 

~o - -  irk - -  a~ + ~a, (4.8) 

Combining (4. 4), (4. 5), (4. 7). (4. 8}, we obtain a system of t ramcendental  equations to 

determine ~ 0 ,  v/0, q~0, al ,  a~, c~ as functions of  ~o, ~0- Letting co ~ 0) I + ~0, 
0 < o)~ ~ i and separating real  and imaginary parts in (4. 6), an equation can be 
obtained for the curve CD in parametric form. 

Let us turn to the determination of  the shape of  the electrode grids and their e lectr ic  
potentials. The col lector  grids are a t the  potential (P0-The emit ter  grid passing th~ou~ 
the point (~1, 0) ,  0 < ~1 ~ ~0, iS at the potential ~ ---- --~1 ' / '  - -  (I) (~t, 0). 
We ~ ~ shape of  the collectors and emit ter  from the condition of  comtancy  of  their 
e lectr ic  potentials as 

- -  ~ o  = ~o'~' + ~)  (~o,  - -  ~o)  = ~0'/' + @0 = ~'/' + ~) (~, ~) 
- -  (I)1 = ~1 #I' -~- @ (~1, 0) ~--- ~ al# + ll~ (~,  ~l) (4.9) 

The values of  ~o -  and ~a.. are dcmrmined from (4. 9), if  it i~ taken into acmotmt that 
11) (~, ~l) "*" - -  ~ as ~l ~ "4- o~. The equatiom for ~0-  and ~ .  ale 

Z'I, - - ~ o ~  - -  - - T o ,  °1® 

The electric potential q) tn the domain G is determined from the relationship 
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q) ~_ __~V, __(~) (~, lq); W and T are obtained as a funcrion of e);these relation° 
ships yield the connection between w and T in parametric form. The total current 
flowing in part of the electrode CD ( -  ~0 ~ ~] ~ - -  lh ~ O) is given by the for- 
mula I (~i) --~ s/s (~0 - -  Tll). A solution can be constructed analogously if the e lec-  
trodes CD and C'D' are finite, the points C and C" are connected by a third collector, 
and solid walls go parallel to the ~ -axis from the points C and C' towards infinity 
(towards increasing ~) . 

§, Let us examine the ixssibiUty of obtaining some exact  solutions of the system of 
equations of elec~rohydrodynarnics when rile hydrodynamic s~ream is not a potential 
s~rearn. 

We consider a two-dimeusional stationary~lectroh.ydrodynamic flow. The eleclzobydro- 
dynamic interaction parameter is assumed infinitesimal. Let the hydrodynamic stream 
be a vortex stream of an incompressible fluid of the following form : 

V* = (~01Y / l  1~, 0), ~ = coast 

Ohrn's law has the form j* --__. q* (V* + bE*),  b ~- coas t  is the mobility. We intro- 
duce dimensionless quantities analogously to ( L  1). The system of equations of electro-  
hydrodynamics [1] is 

div [q (V -- grad cp)] = O~ AqD = -- q (5.1) 
where V = (I ~ 1 ~', 0). 

Let us seek exact solutiom of the system (5. I), which can be represented as 

(p = p ~  (O), q = - -  P~-~ql (8), P = V ~" ~ T! 'z, o = a rc tg  01 / ~) (5.2) 

where y is a constant. We Limit ourselves to the consideration of solutions which are 
symmetric  to the ~-axls.  In this case, the solution of the system (5. I )  can be sought 
only for 11 ~ O. Let m subsrltute (5.2) into (5.1) by first writing it in polar coordinates. 
The following system of equations is obtained : 

-- (T -- 2) pX+~-3 ql sinX Ocos 8 + 0 x+v-3 q1' sinX+~ 8 

7 (7 - -  2) p~-4 qlq) 1 ~_ p~-+qt'(p t '  A- p~-4  qx ~" --~ 0 

(P~" + ? '¢h  ----q~ (5.3) 

If  the exponents of p in the first equation of (5. 3) are equated, we obtain the relation 
between £ and ?. It is ? -~ ~, + i .  In this case the system (5. 3) is transformed into 
a system of ordinary differential equations 

- -  (~ - -  i )  q~ sin x 0 cos 0 + ql '  si nx+~ 0 + (~z - -  i )  q ~ l  + qx'~P~' + q~  ---- 0 (5.4) 

If ~. ~ 0, then V - -  0 for ~l = 0. The solution of the system (~. 4) can be used in 
this case to study the flow of a vortex stream of unipolarly charged fluid around con° 
ductive or nonconductive walls (~l = 0) , If ~. ~ 0, then Y ~ (oo, 0) as ~l ~ 0. 
The solution o f (5 .4 )  in this case can be used as a model to s tudy/he distribution of the 
e lec~ica l  parameters in a s~ongly vortical jet. 

Let us consider the formulation of the boundary value problem for the sysmm (5.4) 
in the general case. The electrohydrodynamic flow must be found in the domain G 
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between the ernirter (0 ~ p ~ co, 0 --  0, = const)  and the collector (0 ~ p 
oo,  0 ----- 01 ---- con.st). The angles 01 and 0, satisQ the inequalities 0 ~<~ 01 
02 ~ ~. The unchargea fluid is charged at the erniuer and discharged at the collector. 
The elecn'Ic potential q~ ~ 0 and the space charge q = - - q ,  pX-1, q .  ~ const  are 
given at the emitter.  The electric potential ~ -~ 0 is given at the coUecr~.  There- 
fore, the boundary conditions for the system (5.4) in the domain G are 

q)l (01) ~- 0, (Pl (6~) = 0, ql (02) = q* (5.5) 

For' ~ ----- o i  the system (5.4) has its simplest form 

2qlctgO÷q1"+q1'~1'+q12=O, ~x"=qx (5.6) 

Let us examine this case in more detaiL We elirninam qx fi'orn the system (5. 6) by 
using the second equation. In place of q~x we in~oduce the new unknown function p ----- 
i + q~1'. We obtain a nonlinear second-order equation for it 

Pp" ~ p'~ + 2p' ctg 0 ~-0 (5.7) 

Therefore, the system (5. 6) admits of a reduction in order by unity. We consider the 
approxirnate solution of (5. 7) when the inequalities 0 ~ 0 x ~ 02 ~ ~ are satisfied. 
Hence, c tg  0 in (5. 7) can be replaced by 0 -~ and its approximate solution can be 
sought as the exact solution of the equation 

PoPo" ÷ Po '~" ~ 20-1Po ' = 0, 01 ~<~ 0 ~<~ 02 (5.8) 

The approximate solution is denoted by the subscript zero. The general solution of this 
equation is po 2 - -  4po ~ c 

0 ----- 01P exp [ 5h (Po, c) l, P = ~012 - -  4p01 -~  C 

{ kxlpo, c), c==4+=~ 
dp0 

P°' k3 (po, c), c ---- 4 - -  ~2 

kx (Po, c) = ~-i [arctg po ct-- 2 arctg pol ~-- 2 i , k~. (Po, c) = po--i '~ ~ ~ i  

k3 (Po, c) ----- - ~  In (Po - -  2 ~ a) (po~ - -  2 - -  a) 

Here c, Pox ~ Po (0x) = const .  Assuming the boundary conditions (5. 5) to be satisfied 
for cpx o and qxo, and also that Po and q~o are related by Po =ffi i + ~1o', we obtain 

~ o  ffi - - 0 x P  exp [4k (Po, c)] ÷ 0 x + 2 (Po - -  Pox) + 4 In P + 2 (8 - - c ) / c  (Po, c) 
0, =01Pexp [4k(po , ,C) ]  

2(Po,--pox) --2ck(Po*,c) ~ 0 ~  - - 0 x  - - 4  ( l n 0 ,  - - l n 0 x )  

c = - -po~ ~ ~ 4po, • 2q .  Po,, Po, = Po (0,) ----- const  

Here c will be greater than, equal to, or less than four depending on the values taken 

on by Ox, Or, q . .  
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This investigation pertains to the spreading of sinsly ionized [unipolarly charged] 
jets in hydrodynamic streams applicable to problems of eleetrohydrodynamic 
flows downstream of a source of charged particles Cfree"jets), in the channels and 
duets of eleetrohydrodynamic ~ystems ("enclosed" jets). Basic nondimensional 
parameters have been defined, upon which the imensity of spreading of the jets 
depends. By means of a numerical solution of the two-dimensional equations 
of electrohydrodynamics the diswibution of the electric parameters (charge den- 
sity, electric potential) in the jet  and in the surrounding space has been estab- 
lished. 


