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A class of exact solutions of a system of equations of electrohydrodynamics is
studied for which the electric current is directed along streamlines of the hydro-
dynamic flow. In the. two-dimensional case the sclution is written down expli-
citly, It is shown how to construct other exact solutions for which the collinear-~
ity condition of the electric current density and velocity vectors has not been
satisfied, by using the solutions obtained, as an illustration, an exact solution

for the flow of a unipolarly charged flnid in a channel with electrode-walls is
constructed, It is shown that for a particular kind of hydrodynamic eddy current
the solution of the two-dimensional system of equations can be reduced in some
cases to finding the solution of a system of ordinary differential equations.

1, Ler us examine the stationary flow of a unipolarly charged fluid. The paramete:
of the electrohydrodynamic interaction is assumed infinitesimal, A hydrodynamic
stream of jdeal incompressible homogeneous fluid has the potential Y* =— grad O*.
Ohm's law has the form j* = ¢* (V* —- pE*), where b = const is the mobility,
Let us introduce dimensionless quantities by means of formulas

z=lEy=1In, z=1f ¢* =9 O =uld

* Enlin .
" = b (1.1
where ©* is the electric field potential E* = — grad @*. Using the potentiality of

the electric field and the velocity field, let us introduce the total potential X =@ + @
The equations of electrohydrodynamics are [1]

AD =0, div(ggrad ¥) =0, Ay = —¢ (1.2)
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Let us seek the solution of the system (1,2) for which the current density j and velocity
Y vectors are collinear at each point of the stream

j=aV (1.3)
where @ = a (§, n, {) is an unknown function which must be found during the solu~
tion, The form of the hydrodynamic stream for which the construction of the solution
(1, 3) is possible will also be found during the solution,

Let us turn to the solution of the problem posed, Using Ohm's law and (1. 3), we obtain

an equation for ¢ from the second equation in (1,2)

(grad a-grad ® ) =0 (1.4)

If two sream functions ¥, and ¥, are introduced for the hydrodynamic flow [2], then
we obtain from (1, 4) that @ is a function of ¥, and ¥,

a =a (¥, ¥, (1.5)

Taking account of Ohm's law and the potentiality of the velocity field, we find that
(1. 3) is equivalent to the relationship
grad ¥ =aq™! grad © (1.6)

From (1. 5) and (1,6) we obtain the general .form of the relation between X, ¢ and
e, © 1 =h(®), q=a(¥, ¥/ k@) (1.7)

where p, (@) and a (¥,, ¥,) are the desired functions of their arguments, Substitut-
ing the expressions for % and ¢ from (1. 7) and (1.2), we obtain equations to determine
the unknown functions @, 4 (®) and ¢ (¥,, ¥,) from the first and third equations
of (1.2) a (¥1, ¥a) p

Igtadd)iz.—:—m, A¢=0 (1.8)
Therefore, the problem of finding exact solutions of the system (1,2) in the form (1, 3)
has been reduced to a problem for harmonic functions, Every exact solution of the
problem of potential motion of an incompressible ideal fluid for which the absolute
value of the velocity can be represented as the product V =V, (@) V, (¥,, ¥.),
generates an exact solution of the system of equations of electrohydrodynamies (1.2),
where a (¥,, ¥,) and & (®) are found from the following relationships:

[«+] v ]
a (¥, Fy) = — 2V, (¥, ¥), (D) = — 45 [Za,,i v, (@) dD + a,] " aD oy

where a,, a,, a,, P, are constants,

2., In the two-dimensionai case, the problem of finding solutions of the form (1., 3)
for the system (1.2) can be carried out compietely. In this case formulas (1. 7) and
(1. 8) become

k4
x=h (@), q=pl, |gad®l=— 2o, a0=0 @)

Here @ and ¥ agree with the potential and stream function of the potential flow of
an ideal incompressible fluid taken with opposite sign, w = @ -+ { ¥ is an analyti-
cal functionof T = § -+ iv.

Let us turn to finding the functions @, & (D) and e (V). The function @ is har-
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monic, therefore, In |grad ® [* is also a harmonic function, hence

» &
(W 1 W) In|grad O = 0 (2.2)

Substituting the expression for | grad @ |* from (2.1) into (2,2) and taking into account
that @ and W are independent, we obtain an equation for ¢ (¥) and h (D)
3 ’ » i -
Wlnlh ((D)h ((D)I=C, a—.i,.z-lnla(‘l’)] =¢, ¢= const (2.3)
Solving (2, 3), we obtain the general form for & (D) and a (¥) in the two-dimensional
case © @
h(®@)=— S [ZC,S exp (cd? + ;@) dO + ¢; ]"'dCD + ¢ (2.4)

0 0
a(¥) = —ciexp (c¥* + 3 ¥)

where ¢, ¢y, Cy,..., ¢ are constants, Knowing h (®) and a (V) we find an expression
for In|grad @ {* and therefore, the relation between w and <

T—T= S exp {‘%" [ew? 4+ (e + icg) w + ¢y — ¢, + ic-,]} dw (2.9)
° i

where T, = §; < in,;, ¢; are constants, The electrical field potential @ and the
stream function for the electric current density vector  (Jg =P / on, /» =

— oy / 8E) are ¥
P=h(@®) —®, Y=—{a(¥)d¥ + %, W= const
0

Formulas (2, 4), (2. 5) exhaust all solutions of the form (1. 3) in the two-dimensional
case, Particular solutions corresponding to one~dimensional flow (¢ = ¢; = ¢y =
¢z = 0), to the flow from a source (¢ = ¢; = 0), from a vortex (¢ = ¢, =0),and
from a vortex source (¢ == (), have been obtained in {3], The one-dimensional flow
has also been investigated in [4].

3, We examine one general property of the exact solutions of the system (1.2).

Let an arbitrary exact solution @,, @, of the system (1.2) which has the total poten-
tial X4 be known. In this case any pair of functions @, (0 is also an exact solution of
the system of equations of electrohydrodynamics (1. 2) if two conditions are satisfied :
(1) ¢+~ @ = %y and(2) AD = (. Therefore, each exact solution of the system
(1.2) generates an infinite set of exact solutions @, @, where the current and charge
density distributions are identical for all exact solutions from this set and are determined
only by the total potential Xu-

Using the above, other exact solutions for which condition (1. 3) has not been satisfied
can be conswucted by using the exact solutions (2, 4), (2. 5) obtained, Therefore, exact
solutions can be constructed for probiems of the flow around electrode-bodies by an
electrohydrodynamic stream (the solution of this problem under an assumption on the
smallness of the characteristic dimension of the electrode-body as compared with the
characteristic dimension of the flow domain has been given in [5]) for the flow of a
unipolarly charged fluid in a channel with electrode~wallis, etc, An example of the
construction of such an exact solution for the electrohydrodynamic flow in a channel
with electrode-walls with the total potential X = -— §"* will be considered below,
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Such a total potential is obtained from (2.4) if we set ¢ =¢) =¢; = ¢; = ¢4 =
Cr =8 =M =0, ¢ =c¢cg =7s.

4, Let us consider the following moblem, The total potential is given by the for-
mula ¥ =—28", £ > 0 inthe flow domain G of a unipolarly charged fluid, The
domain G is bounded by the emitter
HMH’, the collectors FD and F'D’,
and the electrode-walls D'C’ and DC

£’ (Fig. 1), The solid walls DE and D'E’
/ / e issue from the points D and D’ parailel
B 1o the t-axis, The fluid will be without

W s charge outside the domainG || EDC{J
: (1] . E’'D’C’ . The hydrodynamic flow domain
E G’ coincides with the exterior EDC J
E’'D’C’ 1t is assumed that there is no
ihteraction between the hydrodynamic
Fig., 1 stream and the emitter and collectors
[6], therefore, the hydrodynamic potential
@ can be sought in the domain G’ without taking account of the influence of the grids,
Symmeny relative to the § -axis is assumed in solving the problem, hence, it is possible
to limit oneself to seeking solutions in just the lower half-plane, The point D has the
coordinates (&, — 7,). Let us limit ourselves to an analysis of the case for which
. 8¢ > %/4. As will be shown below, this latter condition assures monotoneity of the
approach CD to the §-axis, and therefore, also that the channel DC(C’D’ has the
shape pictired in Fig, 1. The points in the lower half-plane in the figure have the fol-
lowing coordinates:

4 -(—wv O), B(+ oo, O)v C("lf' o, —no)' D (Eo‘ ""T\o),
E(+ oo, —1ny), H (e, —©), F(Egm) —®), M (E, O).

Values of M’ 8oy &1 will be determined during the solution,

In the majority of cases, electrohydrodynamic inviscid flows in channels have been
investigated in a one-dimensional approximation (see [7, 8], say). However, in many
cases the elecrric forces in the flow domain of a unipolarly charged fluid turn out to be
nonpotentizal, hence, the need arises to examine the nonuniform problem, Thus, for exam-
ple, a two-dimensional problem about the motion of a unipolarly charged fluid in a
channel with electrode-walls if solved in [9] by successive approximations,

In the problem considered here, the exact solution is obtained for the two-dimensional
electrohydrodynamic flow in a channel with electrode~walls, The scheme to be eluci-
dated for constructing the solution can be used to find other exact solutions if expressions
are taken for X which are different from that presented above (from (2, 4), for example),
The shapes of the channels will hence be different in the solution obtained,

Let us turn to the solution of the problem, It is necessary to find the shape of the
electrode CD and the value of the electric potential thereon @ = ¢, = const, for
which the poténtial @ of the hydrodynamic flow in the domain G’ would yield a given
total potential %, = — §'*in combination with @ in the domain G.

Let us assume that the desired shape (D has been found. In this case the following
boundary conditions :
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S0E. O =0 for —oc <t <00, _‘EM_—_O for B<E< > (4.1)

am on
. a0 a0 L B
Dlep = — 5%+ Qo -‘-3?—*——1,—511——> for § o<, ®(0,0)=0

are imposed on the function @ in the domain G’ . The function @ is harmonic, there-
fore, an analytic function w = w (1) = @ -+ i¥ can be introduced, where 1 = § +
in. After insertion of the function ¥ , the boundary conditions (4. 1) are equivalent to
the following:

VE)=0 fo —o<E<c. P —n)="¥, for G<E<>

Dlep=—8+ 9y Yo=Y, (4.2)
A 0 i = 0,0)=
-—a-E—’—: —_— 1y _5;"‘ for § >, (D(O, 0) 0’ ‘F( ’0) 0

Here ¥, = const >> 0, the value of ¥, is determined during the solution,

Let us turn to the question of the behavior of the curve CD. As is seen from the ex-
pression for @ |-p from (4.2), the quantity @ |cp decreases more rapidly for &, > 4/,
than in a constant stream with the potential @ = — E, Such a situation is possible in
a channel with monotonely decreasing cross section, i,e. for CD and C’D’approaching
the §-axis monotonely, Evidently CD and C’'D’ approach the E -axis asymptotically,
therefore, n° = (. Otherwise (1° == () there would be ® |.p ~ kg, k = const,
for very large &, which results in a contradiction to (4, 2).

As has already been said, w = @ - i{¥ is an analytic functionof T = § -+ in,
therefore, dv/ dw =4 =+ in is also an analytic function, Let us turn to the deter-
mination of this function, Let us map the hydrodynamic flow domain in the lower half-
plane onto the w plane, and then by using the transformation

w=—§11n(‘1—(o)—-;- %y_t"-m—‘;-d)oﬁ—i’{’o
we map the domain obtained in the 1y plare onto the upper half of the ® = ©; -+~ i®:
plane, Here ®, + ¥, is the value of w at the point T = §, — i7,. The images of
the points A, B, C. D, E have the coordinates 4, (-+ o0,0), B, (1,0), C, (1,0}
D, (0,0), E;(—o0, () inthe w plane, Using (4,2) and the relationship between ¥
and @ we obtain the following boundary conditions for the function A -+ ip, which
must be found in the upper half-plane:

p=0 for —oo<w<0, u=0 for 1< <

2 [ ¥o\Th g 77
A= —{=") [111(1—<D1)4~<01+-q?7°] for 0 < 1

The solution of this problem is given by the Keldysh-Sedov formula in [10]

Y 1 Y]
4 e 2 ‘?0 s W \ — i __; ‘."I:(PO] J
"‘*‘-‘*“E(T) o—1 S[l“(i ®) %+ X
o
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where a is a real number,
Let us turn to the determination of the unknown constants @y, ¥y, @, a. Hence,

dw/dv =1/ (h + in) = —1 at the point 4, therefore, A + iu = —1 for
® = -+ oo. From this condition we obtain that
Now dw / dt = oo at the point B, therefore, A + ip =0 for ® = 1. From this
condition we obtain
2 (BRI (4 g e 2B B (4.5)
T T

Integrating (4. 3), we obtain an expression for T =T (®)

T () = = (%)I/'§<E-?-_T>./’dm§[ln (1 —%) =%+ -’%}'—T" X
0 0

S brd A
1/.1_:1_;‘1....30. ( © ) do - a, + ia, (4.6)
% K= T 0o—1

<

where a, + id: is a constant, At the point T =0 we have w = 0, hence
o ! 1 =43
2/y 32 * ' , TiQo ,
ot it = — ()" ((52g) a0\l 0+ ]
0 0

we
1—x dx 'L&S(
o

® h—w ' X

®
wo—1

) do (&.7)

where W, is the root greater than unity of the equation ¥ In (0w, — 1) + ¥ow, +
a®, = 0. The point @ =0 in the ® -plane corresponds to the point D (§,, — 1),
therefore, we obtain from (4. 6)

Eo —ing =a; + ia, (4.8)

Combining (4. 4), (4. 5), (4. 7, (4. 8), we obtain a systemn of wranscendental equations to
determine @,, ¥, ¢, a,, ay, ¢ as functions of §,, 1,. Letting ®@ — ®; -+ i0,
0 < w; <1 and separating real and imaginary parts in (4. 6), an equation can be
obtained for the curve CD in parametric form,

Let us turn to the determination of the shape of the electrode grids and their elecwic
potentials, The collector grids are at the potential ¢,. The emitter grid passing through
the point (£, 0), 0 << &, <C &y, is at the potential @, = —§*» — @ (§,, 0).
We find the shape of the collectors and emitter from the condition of constancy of their
electric potentials as

— o =8+ D (Bg, —Mo) =8+ @y =81+ D(E n)
—p =57+ PE, 0 =5+ DE 0 (4.9)
The values of {40 and g, are determined from (4. 9), if it is taken into account that
® (&, ) > —E as M — -+ co. The equations for §¢e and ., are

§;’; — % = — Pp, glf., —Eiw = —q

The electric potential ¢ in the domain G is determined from the relationship
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¢ = —t” —®(E, ); w and T are obtained as a function of w; these relation-
ships yield the connection between & and T in parameuic forrn, The total current
flowing in part of the electtode CD (— < n < — 1\1 < 0) is given by the for-
mula [ (1;) = % (1o — ;). A solution can be constructed analogously if the elec~
trodes CD and C’'D’ are finite, the points C and C’ are connected by a third collector,
and solid walls go parallel to the § -axis from the points C and C’ towards infinity
(towards increasing ) .

5. Let us examine the possibility of obtaining some exact solutions of the system of
equations of electrohydrodynamics when the hydrodynamic stream is not a potential
stream,

Wwe consider a two-dimensional stationary-electrobydrodynamic fiow. The electrohydro-
dynamic interaction parameter is agsumed infinitesimal, Let the hydrodynamic soream
be a vortex stream of an incompressible fluid of the following form:

v* =(u.,|y/l|)‘, 0), ) = const

Ohm's law has the form j* = q* (V* + bE*), b = const is the mobility, We intro-
duce dimensionless quantities analogously to (1,1), The system of equations of electro-
hydrodynamics [1] is
div[g(V—gradg)] =0, Ap=—gq (3.1)
where V = (| n |*, 0).
Let us seek exact solutions of the system (5, 1), which can be represented as

P=0"9,8), g=—p"2q(8), o=VE-M, O=arctg(n/}) (5.2

where vy is a constant, We limit ourselves to the consideration of solutions which are
symmemic to the §-axis, In this case, the solution of the system (5,1) can be sought
only for 1 > 0. Let us substitute (5, 2) into (5. 1) by first writing it in polar coordinates,
The following system of equations is obtained :

— (v — 2)p*+v-3¢, sin* B cos B 4 p*+7-3 ¢, sin?*1 6 -
T(T —2) 07 @10y + 0770,y + 07 g,* = 0
e T Y = (5.3)

if the exponents of p in the first equation of (5. 3) are equated, we obtain the relation
between A and 9. Itis ¢ = A -+ 1. In this case the system (5. 3) is wansformed into
a system of ordinary differential equations

— (L —1)g,sin*Bcos B + ¢, sin*10 + (A — 1) 019, + ¢,'Py + g.* =0 (5.4)

"+ A+ 1) =q

If »>0,thenV = for N =0. The solution of the system (5, 4) can be used in
this case to study the flow of a vortex stream of unipolarly charged fluid around con-
ductive or nonconductive walls (1 =0) . If A << 0, then V = (o0, 0) as n =0.
The solution of (5,4) in this case can be used as a model to study the distribution of the
electrical parameters in a strongly vortical jet,

Let us consider the formulation of the boundary value problem for the system (5. 4)
in the general case, The electrohydrodynamic flow must be found in the domain G
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between the emitter (0 << p << o©, 6 =0, = const) and the collector (0 << p <
oo, § =0, == const). The angles 6, and 0, satisfy the inequalities 0 << 6; <C
8, <C n. The uncharged fluid is charged at the emitter and discharged at the collector,
The electric potential ¢ = 0 and the space charge ¢ = —¢y P*!, g4 = const are
given at the emitter, The electwric potential ¢ = = 0 is given at the collector, There-
fore, the boundary conditions for the system (5.4) in the domain G are

9 (8,) =0, 91 (8) =0, g, (8) =44 (5.5)
For A = —1 the system (5. 4) has its simplest form
2q,ctg0 4+ + @0 + 4P =0, o"=q (5.6)

Let us examine this case in more detail, We eliminate g, from the system (5. 6) by
using the second equation, In place of @, we introduce the new unknown function p =
1 4 @,’. We obtain a nonlinear second-order equation for it

pp” + p't 4 2p’ ctg 8 =0 o (5.7)

Therefore, the system (5. 6) admits of a reduction in order by unity. We consider the
approximate solution of (5. 7) when the inequalities ) << 6, << 0, <€ 1 are satisfied,
Hence, ctg 6 in(5.7) can be replaced by 61 and its approximate solution can be
sought as the exact solution of the equation

PoPo” + Po* 4+ 207py’ =0, 8, <06, (5.8)
The approximate solution is denoted by the subscript zero, The general solution of this

equation is Do> — 4po 4+ ¢
8 =0,Pexp(4k(py 0)l, P=| m—rp—rs

ky(po, ), c=4 4 a?

» dpo
k(po, ) = S‘m= ke(po, ), c=14
Pox ks (po, ), c=4—at

—2 27 1
B — arctg pm J, Ky (Do, €) = — =+

Po— & Pm—2

{7
ky(pos €) = T[mtg

(Po— 2 —a) (po1 — 2 4-2)
(Po—2 + ) (por —2 —a)

1
ks (po, ¢) = 57 In

Here ¢, Poy = Do (0;) = const. Assuming the boundary conditions (5. 5) to be satisfied
for @0 and @y, , and also that P, and @;, are related by p, =1 + @', we obtain

Q1o = —06,P exp 4k (po, )] + 8, + 2 (py —Pa) +41I0P + 2(8 —c) k(po, ©)
=0, P exp [4k (pes, ©)]

2 (Pos —Por) —2 ¢k (Pp2r ¢) =6 —6, —4 (In B, —In6,)
¢ = —pe® + 4pos + 244 Do Po: = Do (02) == const

Here ¢ will be greater than, equal to, or less than four depending on the values taken
on by 911 eh q*-
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This investigation pertains to the spreading of singly ionized [unipolarly charged)
jets in hydrodynamic streams applicable to problems of elecmohydrodynamic
flows downstream of a source of charged particles ("free”jets), in the channeis and
duets of electrohydrodynamic systems (“enclosed” jets). Basic nondimensional
parameters have been defined, upon which the intensity of spreading of the jets
depends, By means of a numerical solution of the two-dimensional equations

of elecrohydrodynamics the distribution of the electric parameters (charge den-
sity, electric potential) in the jet and in the surrounding space has been estab-
lished.



